Script with CHECKSEQUENCEVERIFY - Native Segwit P2WSH
To follow along this tutorial
|
Let’s create a native Segwit P2WSH transaction with a script that contains the OP_CHECKSEQUENCEVERIFY
relative timelock opcode. The
script is almost the same as Script with CHECKLOCKTIMEVERIFY - Native Segwit P2WSH but with a relative timelock of 5 blocks.
To read more about OP_CHECKSEQUENCEVERIFY:
Learn more about P2WSH:
Either alice_1 can spend the P2WSH UTXO but only when 5 blocks have been mined after the funding transaction is first confirmed, or bob_1 and alice_1 can redeem the funds at any time.
function csvCheckSigOutput(aQ, bQ, timelock) {
return bitcoin.script.compile([
bitcoin.opcodes.OP_IF,
bitcoin.script.number.encode(timelock),
bitcoin.opcodes.OP_CHECKSEQUENCEVERIFY,
bitcoin.opcodes.OP_DROP,
bitcoin.opcodes.OP_ELSE,
bQ.publicKey,
bitcoin.opcodes.OP_CHECKSIGVERIFY,
bitcoin.opcodes.OP_ENDIF,
aQ.publicKey,
bitcoin.opcodes.OP_CHECKSIG,
])
}
Creating and Funding the P2WSH
const bitcoin = require('bitcoinjs-lib')
const { alice, bob } = require('./wallets.json')
const network = bitcoin.networks.regtest
const hashType = bitcoin.Transaction.SIGHASH_ALL
const bip68 = require('bip68')
const keyPairAlice1 = bitcoin.ECPair.fromWIF(alice[1].wif, network)
const keyPairBob1 = bitcoin.ECPair.fromWIF(bob[1].wif, network)
In both scenarios alice_1 P2WPKH address will get back the funds.
const p2wpkhAlice1 = bitcoin.payments.p2wpkh({pubkey: keyPairAlice1.publicKey, network})
console.log('P2WPKH address')
console.log(p2wpkhAlice1.address)
const timelock = bip68.encode({blocks: 5}) (1)
1 | We encode the sequence value according to BIP68 specification. |
const witnessScript = csvCheckSigOutput(keyPairAlice1, keyPairBob1, timelock)
console.log('Witness script:')
console.log(witnessScript.toString('hex'))
In a P2WSH context, a redeem script is called a witness script. |
We can decode the script in Bitcoin Core CLI with decodescript
.
const p2wsh = bitcoin.payments.p2wsh({redeem: {output: witnessScript, network}, network})
console.log('P2WSH address:')
console.log(p2wsh.address)
sendtoaddress bcrt1qjnc0eeslkedv2le9q4t4gak98ygtfx69dlfchlurkyw9rauhuy0qgmazhq 1
Note that our redeem script doesn’t contain any variable data so the P2WSH will always be the same. |
getrawtransaction TX_ID true
The output script of our funding transaction is a versioned witness program.
It is composed as follow: <00 version byte>
+ <32-byte hash witness program>
.
The SHA256 hash of the witness script (in the witness of the spending tx) must match the 32-byte witness program (in prevTxOut).
bitcoin.crypto.sha256(witnessScript).toString('hex')
or
bx sha256 WITNESS_SCRIPT
Preparing the spending transaction
Now let’s prepare the spending transaction by setting input and output, as well as the nSequence value for the first scenario.
const txb = new bitcoin.TransactionBuilder(network)
// txb.addInput(prevTx, vout, sequence, prevTxScript)
txb.addInput('TX_ID', TX_VOUT, timelock) (1)
1 | We set the sequence field as the timelock value only if we want to run the first scenario. |
txb.addOutput(p2wpkhAlice1.address, 999e5)
const tx = txb.buildIncomplete()
Adding the witness stack
Now we can update the transaction with the witness stack (txinwitness
field), providing a solution to the locking script.
// hashForWitnessV0(inIndex, prevOutScript, value, hashType)
const signatureHash = tx.hashForWitnessV0(0, witnessScript, 1e8, hashType)
Note that we use a special method hashForWitnessV0 for Segwit transactions.
|
There are two ways to redeem the funds, either alice_1 after the timelock expiry or alice_1 and bob_1 at any time. We control which branch of the script we want to run by ending our unlocking script with a boolean value.
const witnessStackFirstBranch = bitcoin.payments.p2wsh({
redeem: {
input: bitcoin.script.compile([
bitcoin.script.signature.encode(keyPairAlice1.sign(signatureHash), hashType),
bitcoin.opcodes.OP_TRUE,
]),
output: witnessScript
}
}).witness
console.log('First branch witness stack:')
console.log(witnessStackFirstBranch.map(x => x.toString('hex')))
const witnessStackSecondBranch = bitcoin.payments.p2wsh({
redeem: {
input: bitcoin.script.compile([
bitcoin.script.signature.encode(keyPairAlice1.sign(signatureHash), hashType),
bitcoin.script.signature.encode(keyPairBob1.sign(signatureHash), hashType),
bitcoin.opcodes.OP_FALSE
]),
output: witnessScript
}
}).witness
console.log('Second branch witness stack:')
console.log(witnessStackSecondBranch.map(x => x.toString('hex')))
tx.setWitness(0, witnessStackFirstBranch)
//tx.setWitness(0, witnessStackSecondBranch)
No build
step here as we have already called buildIncomplete
console.log('Transaction hexadecimal:')
console.log(tx.toHex())
decoderawtransaction TX_HEX
Broadcasting the transaction
If we run the first scenario we need 5 blocks to be mined so that the timelock will expire.
generatetoaddress 5 bcrt1qnqud2pjfpkqrnfzxy4kp5g98r8v886wgvs9e7r
sendrawtransaction TX_HEX
getrawtransaction TX_ID true
Observations
For both scenarios we note that our scriptSig is empty.
For the first scenario, we note that our witness stack contains:
-
Alice_1 signature
-
01, which is equivalent to OP_TRUE
-
the witness script, that we can decode with
decodescript
For the second scenario, we note that our witness stack contains:
-
Alice_1 signature
-
Bob_1 signature
-
an empty string, which is equivalent to OP_FALSE
-
the witness script, that we can decode with
decodescript