Script with CHECKSEQUENCEVERIFY - Legacy P2SH
To follow along this tutorial
|
Let’s create a legacy P2SH transaction with a script that contains the OP_CHECKSEQUENCEVERIFY
relative timelock opcode.
The script is almost the same as Script with CHECKLOCKTIMEVERIFY - Legacy P2SH but with a relative timelock of 5 blocks.
Learn more about OP_CHECKSEQUENCEVERIFY:
Either alice_1 can spend the P2SH UTXO but only when 5 blocks have been mined after the funding transaction is first confirmed, or bob_1 and alice_1 can redeem the funds at any time.
function csvCheckSigOutput(aQ, bQ, lockTime) {
return bitcoin.script.fromASM(
`
OP_IF
${bitcoin.script.number.encode(lockTime).toString('hex')}
OP_CHECKSEQUENCEVERIFY
OP_DROP
OP_ELSE
${bQ.publicKey.toString('hex')}
OP_CHECKSIGVERIFY
OP_ENDIF
${aQ.publicKey.toString('hex')}
OP_CHECKSIG
`
.trim()
.replace(/\s+/g, ' '),
);
}
Creating and Funding the P2SH
const bitcoin = require('bitcoinjs-lib')
const { alice, bob } = require('./wallets.json')
const network = bitcoin.networks.regtest
const bip68 = require('bip68')
const keyPairAlice1 = bitcoin.ECPair.fromWIF(alice[1].wif, network)
const keyPairBob1 = bitcoin.ECPair.fromWIF(bob[1].wif, network)
const lockTime = bip68.encode({blocks: 5}) (1)
console.log('Timelock in blocks:')
console.log(lockTime)
1 | We encode the timelock value according to BIP68 specification. |
const redeemScript = csvCheckSigOutput(keyPairAlice1, keyPairBob1, timelock)
console.log('Redeem script:')
console.log(redeemScript.toString('hex'))
const p2sh = bitcoin.payments.p2sh({redeem: {output: redeemScript, network}, network})
console.log('P2SH address:')
console.log(p2sh.address)
sendtoaddress 2Mw8mn5xQWk8Pz2KNXLnjSvS6TemKVELLyy 1
Note that our redeem script doesn’t contain any changing data, so the P2SH address will always be the same. |
gettransaction TX_ID
Find the output index (or vout) under | .
Preparing the spending transaction
Now let’s prepare the spending transaction by setting input and output, as well as the nSequence value for the first scenario.
const psbt = new bitcoin.Psbt({network})
psbt.addInput({
hash: 'TX_ID',
index: TX_VOUT,
sequence: lockTime, (1)
nonWitnessUtxo: Buffer.from('TX_HEX','hex'),
redeemScript: Buffer.from(redeemScript, 'hex')
})
1 | Only in case we want to run the first scenario we have to set the sequence field as the timelock value. |
psbt.addOutput({
address: alice[1].p2wpkh,
value: 999e5,
})
Creating the unlocking script
There are two ways the redeem the funds, alice_1 after the timelock expiry or alice_1 and bob_1 at any time. We control which branch of the script we want to run by ending our unlocking script with a boolean value.
psbt.signInput(0, keyPairAlice1)
psbt.signInput(0, keyPairBob1)
const getFinalScripts = (inputIndex, input, script) => {
// Step 1: Check to make sure the meaningful locking script matches what you expect.
const decompiled = bitcoin.script.decompile(script)
if (!decompiled || decompiled[0] !== bitcoin.opcodes.OP_IF) {
throw new Error(`Can not finalize input #${inputIndex}`)
}
// Step 2: Create final scripts
// Scenario 1
const paymentFirstBranch = bitcoin.payments.p2sh({
redeem: {
input: bitcoin.script.compile([
input.partialSig[0].signature,
bitcoin.opcodes.OP_TRUE,
]),
output: redeemScript
}
})
// Scenario 2
/*
const paymentSecondBranch = bitcoin.payments.p2sh({
redeem: {
input: bitcoin.script.compile([
input.partialSig[0].signature,
input.partialSig[1].signature,
bitcoin.opcodes.OP_FALSE
]),
output: redeemScript
}
})
*/
return {
finalScriptSig: paymentFirstBranch.input
}
}
psbt.finalizeInput(0, getFinalScripts)
console.log('Transaction hexadecimal:')
console.log(psbt.extractTransaction().toHex())
decoderawtransaction TX_HEX
Broadcasting the transaction
If we run the first scenario we need 5 blocks to be mined so that the timelock will expire.
generatetoaddress 5 bcrt1qnqud2pjfpkqrnfzxy4kp5g98r8v886wgvs9e7r
sendrawtransaction TX_HEX
getrawtransaction TX_ID true
Observations
On the first scenario, we note that the input sequence field is 5 and that our scriptSig contains:
-
Alice_1 signature
-
1, which is equivalent to OP_TRUE
-
the redeem script, that we can decode with
decodescript
On the second scenario, we note that our scriptSig contains:
-
Alice_1 signature
-
Bob_1 signature
-
0, which is equivalent to OP_FALSE
-
the redeem script, that we can decode with
decodescript